EVALUATION OF SPRING LOAD RESTRICTIONS (SLR) EFFECTS ON PAVEMENTS

Denis St-Laurent, ing. M.Sc.
Service des chaussées

Québec Ministère des Transports

2003-12-03 Montréal
Heavy trucks

Truck factor = \[
\frac{2 \times \text{weight}}{\text{Axle weight}} = \frac{16 \times \text{damages}}{\text{Reference axle w.}}
\]

- **2 x weight = 16 x damages**

- **AASHTO:**
 - 1 ESAL = 1 single axle of 8 165 kg
 - = 1 tandem axle of 15 200 kg
 - = 1 tridem axle of 21 800 kg
Trafic evaluation

- 3,500 counting and classification stations
- 10 Weigh-In-Motion (WIM) scales
- ESALS calculated with ASTM E1318
Load Equivalency Factor: $\Delta \text{LEF} = F(\Delta \text{weight})$

- MTQ 70%
- City 17.5%
- MTQ 30%
- City 82.5%

Status quo

Fully loaded

Nominal weight restriction (Δweight)
Heavy Traffic during the spring period

- **ESAL per day** \(\approx 60\% \) of summer
 - Average truck \(\approx \) LEF 20\% smaller (SLR of 15\%)
 - Shipments needs about \(\approx 20\% \) less than normal period

- **SLR removal hypothesis**
 - Average truck load same as summer
 - \(\approx 7\% \) less displacements \(\Rightarrow \) **ECONOMY OF THE INDUSTRY**
 - Shipments needs about \(\approx 20\% \) less than normal period

Increase ESALS of 19\% (18 \% inside cities)
If We Remove Spring Load Restrictions (SLR)

=> 19% more ESALS per day
(18% inside cities)
19% more ESALS if we remove SLR
Structural Damages

⇒ Wheelpath Distresses
Damages During Spring Thaw

- 1a-Literature (example from AASHTO)

From all the cases found in literature, spring thaw damages varies from 0.3 to 0.85
Damages During Spring Thaw

1b-Performance monitoring (H10, Fleurimont)

Dp = \frac{\text{cracks occurring during thaw}}{\text{Total cracking}}

Dp = 0.35 to 0.91 (0.7)
A lot of pavement damaging occurs during winter thawing events

- Climatic variability between different years

Ability to raise SLR during each thawing events, including those in winter, would be the ideal of beauty

Winter Weight Premiums does not appear as a very good feature
Falling Weight Deflectometer (FWD)

9 géophones
Structural Damaging (1/N)

Layered Elastic Analysis Softwares

\[N_1 = K_1(\varepsilon)^{K_2}(E)^{K_3} \]
Unbound Materials Moduli
Rang Saint-Alexis, Saint-Maurice

Date of FWD test

Nov Jan Mar May Jul Sep Nov

200
180
160
140
120
100
80
60
40
20
0

Aggregate base

Silt

Clay

WINTER

THAW

Moduli (MPa)
Structural Indicators

- ε_t: AC elongation (fatigue cracking)
 - Six models from MTQ laboratory
 - Models from Norway, Alaska, Shell, Asphalt Institute
 - Empirical criteria based on SCI$_{20^\circ C}$

- ε_v: rutting by permanent settlements

- PSI: AASHTO-1993 model
 - SN_1 corrected at 20$^\circ$C
Theoretical Simulation of Structural Damages

Freezing Sensor and Climatic Data
- Temperature, freezing, thawing, (water surface, precipitation, melting snow and ice, state of stress)

Periodic FWD Testing
- Types of materials, thickness, resilient modulus, fatigue strength

Layered Elastic Theory
- Strain, structural number, surface curvature index

Traffic Data
- ESAL number

Fatigue Law
- Miner's Law: \(D_i = \frac{n_i}{N_i} \)
- life expectancy: \(\frac{1}{D_{\text{mean}}} \)

Damage

<table>
<thead>
<tr>
<th>Time interval</th>
<th>Climatic and other conditions</th>
<th>Properties of the layers of pavement</th>
<th>Pavement deterioration indicator</th>
<th>N</th>
<th>n</th>
<th>D</th>
<th>RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Temperature, freezing, thawing, (water surface, precipitation, melting snow and ice, state of stress)</td>
<td>Types of materials, thickness, resilient modulus, fatigue strength</td>
<td>Strain, structural number, surface curvature index</td>
<td>N = f (indicator)</td>
<td>(n_i) = ESAL number</td>
<td>(D_i = \frac{n_i}{N_i})</td>
<td>RDF = (D_i / D_{\text{mean}})</td>
</tr>
<tr>
<td>Week 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theoretical simulations (damaging)

Normalized and cumulated damages

SLR = 0.85

Week number

Highway 73, Scott-Jonction
Highway 20, Montmagny
Road 161, Saints-Martyrs-Canadiens
Road 155, Saint-Célestin (direction nord)
Road St-Alexis, Saint-Maurice (1993-94)
Road 352, Saint-Narcisse (1993-1994)
Road 159, Sainte-Anne-de-la-Pérade (1993-1994)
Road 361, Saint-Narcisse (1993-1994)
Spring damages $\approx f$ (summer deflection)

- Allow to use deflection inventory in order to extend conclusions for the whole pavement network

 (Adjusted values to account for actual traffic conditions)
Dynaflect inventory
ex: national roads

1410 km with DIM between 4 à 5
⇒ $D_p = 0.38$
Weighted average = 0.63

$y = 0.27338x - 0.84637$
$R^2 = 0.61842$
$\varepsilon = 0.15$

Average DIM = 5.07

$DIM = \sqrt{(0.25 \cdot d_{0c} \cdot SCI_{300c})}$
If We Remove Spring Load Restrictions (SLR)

% life reduction = \(Dp \times \Delta \text{ESALS} \)

<table>
<thead>
<tr>
<th>Road Type</th>
<th>% Life Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highways</td>
<td>0.08 (0.37 x 0.19)</td>
</tr>
<tr>
<td>National roads</td>
<td>0.12 (0.63 x 0.19)</td>
</tr>
<tr>
<td>Régional roads</td>
<td>0.14 (0.71 x 0.19)</td>
</tr>
<tr>
<td>Collector roads</td>
<td>0.15 (0.78 x 0.19)</td>
</tr>
<tr>
<td>Municipal roads</td>
<td>0.14 (0.74 x 0.18)</td>
</tr>
</tbody>
</table>

- A typical kilometer of *National Road* cost 10 000$ per year to maintain. The reduced life expectancy of 12% means a minimum annual overcost of 1200 $ per km.

\[Dp = \text{Damages during SLR period} \]
Exclusion of the km where $\Delta IRI \geq 2$:

- AUT: 3.5%
- NAT: 11.2%
- REG: 21.6%
- COL: 20.1%

Damages not related to heavy vehicles
Actual maintenance cost of the pavement network

<table>
<thead>
<tr>
<th>Class of road</th>
<th>Cost (k$ / km / year)</th>
<th>Network (km)</th>
<th>Cost (M$ / y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highways</td>
<td>14,5 à 18,1</td>
<td>3 571</td>
<td>51.8</td>
</tr>
<tr>
<td>National</td>
<td>9,2 à 11,9</td>
<td>8 843</td>
<td>85.8</td>
</tr>
<tr>
<td>Regional</td>
<td>6,8 à 9,2</td>
<td>4 535</td>
<td>20.0</td>
</tr>
<tr>
<td>Collector</td>
<td>5,6 à 7,6</td>
<td>6 382</td>
<td>36.9</td>
</tr>
<tr>
<td>Municipal</td>
<td>9,5 à 12,8</td>
<td>32 859</td>
<td>190.0</td>
</tr>
</tbody>
</table>

Municipal : 5,8 based upon values on collector roads

PMS (Pavement Management System)

PMS costs from Jocelyn Beaulieu, ing. Service Orientations stratégiques
Design adjustments

AC thickness (mm)

ESALS (millions)

Δ ≈ 5 mm de B.B.
Δc ≈ 60 €/m²
Δc / c < 1%
If We Remove Spring Load Restrictions (SLR)

MTQ : 24.4

MUNICIPAL : 26.9

TOTAL : 51.3 millions of $

(Highways : 4.2
 National : 11.5
 Regional : 2.9
 Collector : 5.8)
Sensitivity and reliability within standard deviation of data

- Correlation Dp – DIM: $\sigma = 0.15$
- Costs in PMS: $\sigma = 10\%$
- Above combined

Most probable estimate
COMPARISON

Québec Ministère des Transports
% of weight restricted

Gain or loss (millions of $ per year)

% of weight restricted

- Pavements
- Industry
- Combined
Duration restricted

Gain or loss (millions of $ per year)

Duration of SLR

- Pavements
- Industry
- Combined
Actual SLR are believed to provide at least about 50 millions of $ per year to the public road administrations (+50 > -40)

When comparing with the industry counterpart, the Status quo appear as the optimum homogeneous solution
Heterogeneous approaches

Examples

- **Norway:**
 - SLR: 0 / 12.5 / 25 / 50 % (removed in 1995)
 - Road network divided in three classes of permitted loads all year long: 6 / 8 / 10 metric tons

- **West of North-America (Canada – USA):**
 - One slide per month from November 30th, 1998 to July 1st, 1999.
November 30th, 1998

From McLeod, D.R., D. Palsat and A. Clayton (TAC, 2002)
December 10th, 1998

Winter weight premium (+26\%)
January 14th, 1999
Weight premium (+26\%)
February 11th, 1999
Weight premium (+26%)
Restrictions level 1 (-10%)

From McLeod, D.R., D. Palsat and A. Clayton (TAC, 2002)
March 11th, 1999
Weight premium (+26%)
Restrictions level 1 (-10%)
Restrictions level 2 (-35%)

From McLeod, D.R., D. Palsat and A. Clayton (TAC, 2002)
April 8th, 1999
Restrictions level 1 (-10%)
Restrictions level 2 (-35%)

From McLeod, D.R., D. Palsat and A. Clayton (TAC, 2002)
May 13th, 1999
Restrictions level 1 (-10%)
Restrictions level 2 (-35%)

From McLeod, D.R., D. Palsat and A. Clayton (TAC, 2002)
June 10th, 1999

Restrictions level 1 (-10%)
Restrictions level 2 (-35%)

From McLeod, D.R., D. Palsat and A. Clayton (TAC, 2002)
Heterogeneous approaches

- Some problems remains
 - Enforcement
 - Complicated to adequately practice
 - Actual enforcement scales mostly on highways
 - Increased risk of contravening
 - Needs extensive, network level, monitoring of pavement bearing capacity (deflections)
 - Needs harmonisation of a set of predetermined itineraries
 - Each trucks need to use local roads « before going in » and « after going out » of highways
 - Carefull study needed in order to avoid showing favouritism or being prejudicial to individual interests
 - Increasing restrictions on local roads leads to reduced efficiencies due to unavoidable exceptions (busses, vehicles of public utilities ...)

Increased risk of contravening
Restrictions hétérogènes

- Problèmes subsistants:
 - Gestion et contrôle des charges
 - Plus complexe à appliquer
 - les stations de pesage sont surtout sur les autoroutes
 - Risques accru de contrevenants
 - Nécessité d’une auscultation soutenue de la portance sur tout le réseau
 - Nécessité d’harmoniser les principaux itinéraires
 - Les camions doivent utiliser une route secondaire pour entrer et sortir des autoroutes
 - Étude minutieuse requise pour éviter des injustices entre les différents intérêts individuels des entreprises
 - Des restrictions accrues sur les routes locales veriaient leur efficacité réduite à cause des exceptions inévitables (autobus, véhicules d’utilités publiques, ...)

- Restrictions hétérogènes
CONCLUSION

- Homogeneous restrictions are recommended ...
 until the development of acceptable solutions against the shortcomings of the heterogeneous approach
 - Enforcement more realistic in practice
 - Ensure the same justice for all
 - Status quo appears the optimum homogeneous solution
 - Maintain status quo until further notice
 - Consult all the partners (municipalities and counties, road enforcement services, shippers and industry, other entity concerned).