Exploring the Merits of Commercial Vehicle Forward Collision Avoidance and Mitigation Systems (F-CAM)

Presented to:

Task Force on Vehicle Weights and Dimensions Policy

John Woodrooffe November 20, 2013

Montreal

Private Public Partnership Sponsor

NHTSA and Meritor WABCO

NHTSA – Robert Kreeb and James Funke

Meritor WABCO – Alan Korn (Jon Morrison)

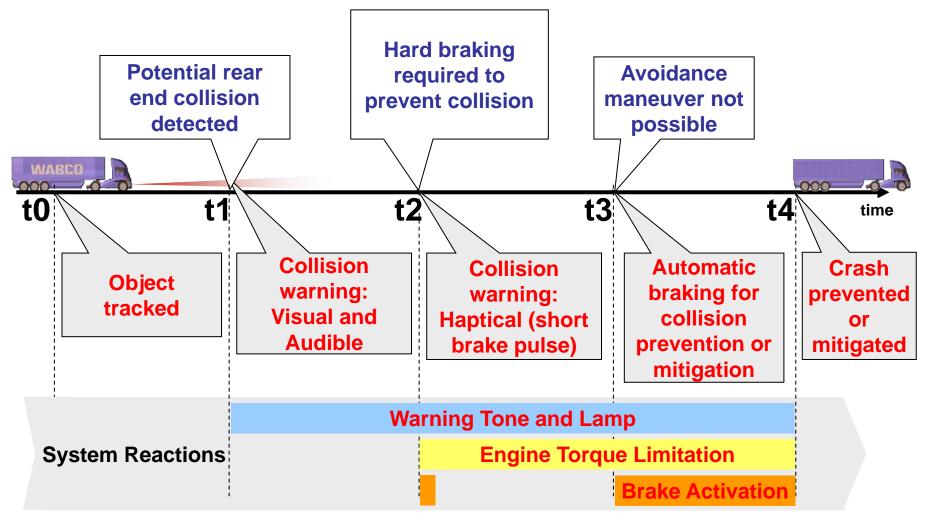
Terminology

- System is comprised of Forward Collision Warning + Autonomous Breaking
- Forward collision contributes to crash avoidance and autonmated braking contributes to collision mitigation

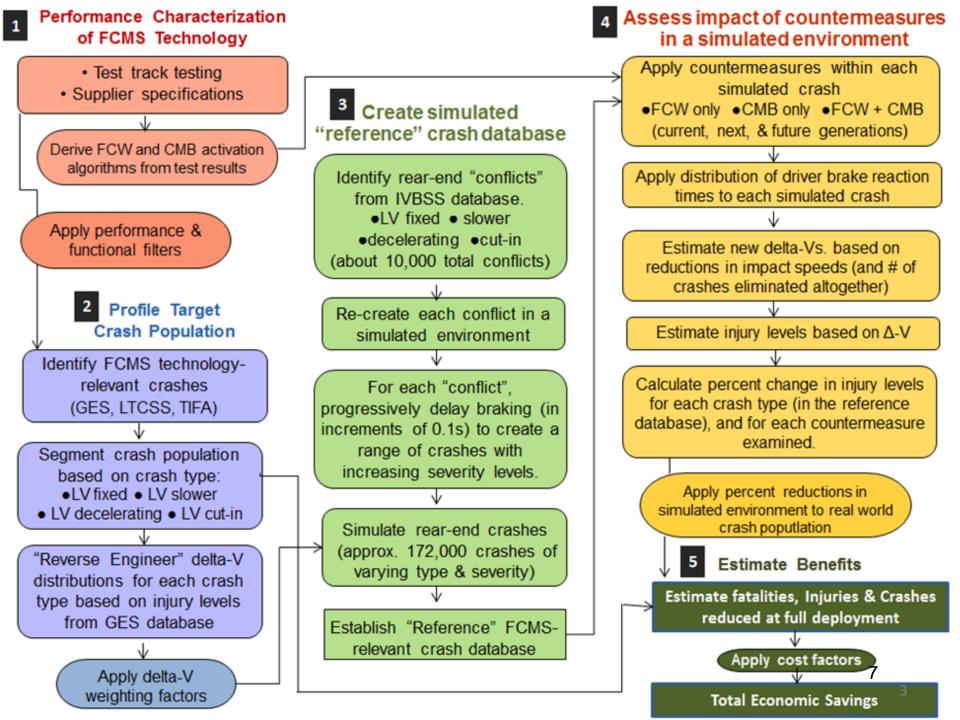
Commercial Vehicle Forward Collision Avoidance and Mitigation Systems (F-CAM)

Project Goals

- Characterize the performance of a current F-CAM system via test track experiments and simulation.
- Identify and profile the target crash population for F-CAM systems (i.e. truck-involved rear-end crashes).
- Estimate, via modeling and simulation, the effectiveness of F-CAM technologies in avoiding and mitigating rear-end crashes
- Obtain "case and control" data from fleets for statistical analysis of F-CAM safety performance in real-world application.
- Apply cost factors to crash reduction/mitigation estimates to determine total economic benefits



Project Elements


- Crash data analysis
- Fleet data (2 national fleets analyzed)
- Test program
- Modeling
- Benefit analysis

F-CAM Intervention Sequence

Target Crash Types

- Crash types selected as relevant to the technology
- Rear-end, striking
- Current generation:
 - Lead vehicle stopped at impact, but seen moving
 - Lead vehicle slower, steady speed
 - Lead vehicle decelerating
 - Lead vehicle cut-in

Estimated Annual Rear-end Striking Crashes TIFA 2003-2008, GES 2003-2008

 "Fixed" means LV was stationary (fixed) before coming in radar range of the subject vehicle, i.e., never seen moving.

	Fatal	Injury	PDO	Total
Crash type	Ν	N	N	Ν
LV fixed	62	882	2,119	3,078
LV stopped	13	1,244	2,987	4,263
LV slower	90	1,199	1,794	3,082
LV decel.	18	1,502	3,152	4,750
LV cut-in	9	156	649	814
Total	192	4,983	10,701	15,987*

Tractor Semitrailer

"PDO" specifies property damage only crashes.

* Total includes 111 crashes of unknown injury severity.

 "Stopped" means LV seen moving by the subject vehicle's radar prior to coming to a stop.

Single Unit Truck

Crash type	Fatal	Injury	PDO	Total
	Ν	Ν	Ν	N
LV fixed	20	1,215	2,202	3,438
LV stopped	8	2,228	4,037	6,270
LV slower	26	318	902	1,246
LV decel.	8	1,222	3,815	5,096
LV cut-in	1	134	187	322
Total	63	5,117	11,143	16,374*

Fatalities and Injuries in Rear-end Striking Crashes TIFA 2003-2008, GES 2003-2008

- "Fixed" means LV was stationary (fixed) before coming in radar range of the subject vehicle, i.e., never seen moving.
- "Stopped" means LV seen moving by the subject vehicle's radar prior to coming to a stop.

Tractor Semitrailer


	Injury severity				Total	
Crash type	Fatal	A- injury	B-injury	C-injury	injuries	
LV fixed	78	139	335	861	1,413	
LV stopped	16	158	431	1,179	1,782	
LV slower	107	601	865	727	2,300	
LV decelerating	22	303	605	1,251	2,180	
LV cut-in	9	87	48	115	259	
Total	231	1,287	2,284	4,132	7,934	

Single Unit Truck

	Injury severity				Total
Crash type	Fatal	A- injury	B- injury	C- injury	injuries
LV fixed	22	156	278	1,272	1,728
LV stopped	9	277	493	2,306	3,085
LV slower	30	116	154	241	542
LV decelerating	10	189	334	1,426	1,959
LV cut-in	1	2	38	141	182
Total	72	740	1,298	5,386	7,496

Subject Vehicle Highlights

Forward Radar

Multiple DVI

DAS Interface

Towable Target Evolution and Highlights

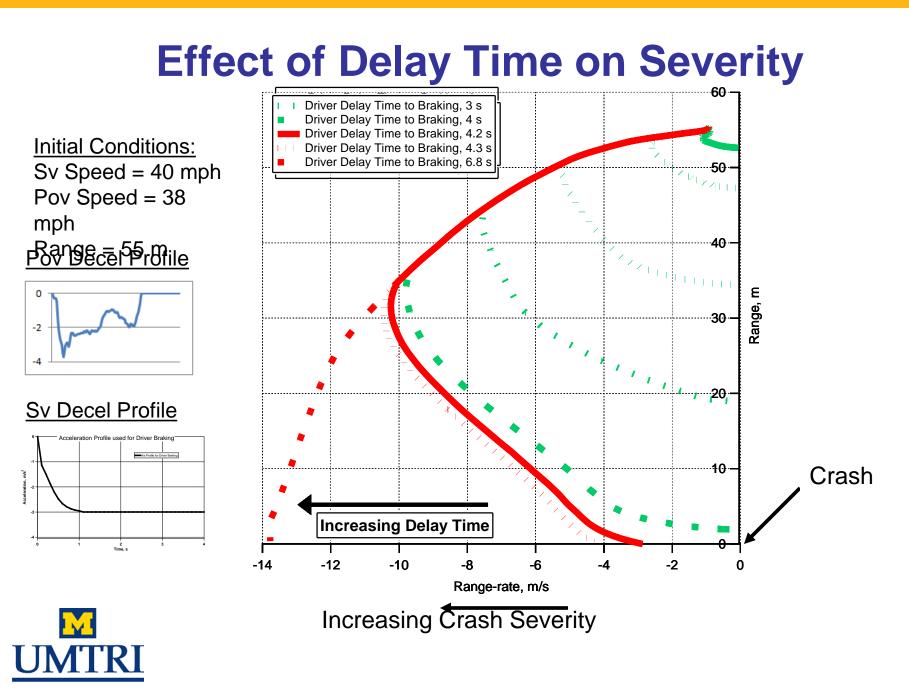
"Seed"

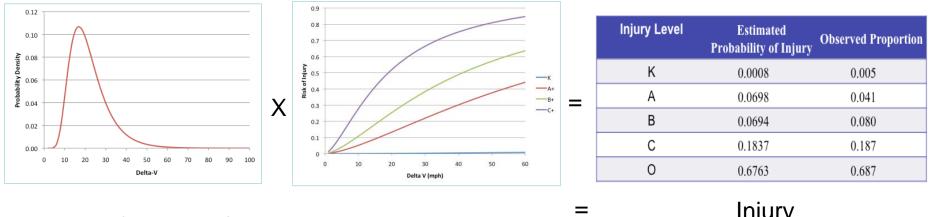
Initial UMTRI Radar only Target

Initial Vision Compatible Target

Vision Compatible Target

Final Vision Compatible Target


Establishing the Simulated "Reference" (or baseline) Crash Database


IVBSS Heavy Truck Feld Operational Test

- 1,000,000 km by 18 drivers over 10 months Mix of P&D and Line-haul
- Initial Conditions (Speeds, Distance, PovAx)
 - Lead Vehicle Braking, N = 8210 events
 - Lead Vehicle Slower, N = 1471 events
 - Cut-in, N = 382 events
 - Fixed, N = 470 events
- Driver Braking Profile
- Driver Brake Reaction Time

Estimating delta-V distribution for historical rear-end crash population We get baseline delta-V distribution by finding the distribution of delta-V that reproduces the injury patterns for truck-into-car rear ends in GES

Delta-V (Exposure) X Risk (given dV)

Injury

 Unique delta-V distributions are developed for each crash type (LV slower, decelerating, stopped, cut-in).

Evaluate system performance compared to baseline

System evaluation:

- FCW—accounts for a distribution of driver brake reaction times from 0.5-2.7 sec, based on literature and braking in IVBSS
- 2) CMB—three systems; driver not in loop.
- 3) Combination—best performance of either FCW or CMB for each case

Technology Simulation Methodology

- Based on the rules for a FCW, calculate the simulation time when an FCW would have been given to the driver
- Map Driver Brake Reaction Time Distribution on to Baseline Simulations
- For each Baseline simulation that resulted in a crash—rerun with the three CMB algorithms and save the results

Characteristics of Future Systems

- System can reliably detect moving and fixed vehicles
- CMB automated braking deceleration levels
 - nominal 0.35 g for the second generation system
 - nominal 0.60 g for the third generation system

Reduction in Injury Severity

Tractor Semitrailer

Device	Fatal	Injury	No injury				
Subsystem Contribution							
FCW only	31%	27%	11%				
CMB only 2 nd gen.	26%	32%	10%				
CMB only 3 rd gen.	44%	42%	19%				
Complete System Contribution							
Second Generation	44%	47%	20%				
Third Generation	57%	54%	29%				
Current Generation	24%	25%	9%				

Single Unit Trucks

Device	Fatal	Injury	No injury				
Subsystem Contribution							
FCW only	28%	25%	11%				
CMB only 2 [№] Gen.	27%	33%	13%				
CMB only 3rd Gen.	42%	46%	23%				
Complete System Contribution							
Second Generation	43%	46%	24%				
Third Generation	55%	57%	34%				
Current Generation	22%	21%	10%				

Total Annual Economic Benefit (2013 Dollars)

Tractor Semitrailer

Device	Fatal	Injury	No injury	Total			
	Subsystem Contribution						
FCW only	\$528.9	\$544.8	\$34.4	\$1,108.1			
CMB only 2 nd gen.	\$446.2	\$633.6	\$31.9	\$1,111.7			
CMB only 3 rd gen.	\$741.2	\$792.8	\$60.6	\$1.594.6			
	Complete System Contribution						
Second Generation	\$745.0	\$919.5	\$65.8	\$1,730.3			
Third Generation	\$972.7	\$1046.1	\$93.1	\$2,112.0			
Current Generation	\$412.4	\$513.0	\$29.5	\$954.9			

Single Unit Trucks

Device	Fatal	Injury	No injury	Total			
	Subsystem Contribution						
FCW only	\$142.3	\$395.3	\$30.5	\$568.1			
CMB only 2 nd Gen.	\$134.6	\$500.8	\$35.4	\$670.8			
CMB only 3 rd Gen.	\$211.7	\$690.2	\$62.4	\$964.3			
(Complete	System C	Contributi	ion			
Second Generation	\$214.7	\$703.8	\$63.9	\$982.4			
Third Generation	\$275.6	\$853.9	\$89.7	\$1,219.2			
Current Generation	\$112.9	\$342.8	\$25.8	\$481.5			

Conclusions

Tractor semitrailers

 The annual reduction in fatalities and injuries relative to the base population for current generation systems is:

Current technology24% and 25% respectively (\$0.9 billion/yr)Second generation44% and 47% respectively (\$1.7 billion/yr)Third generation57% and 54% respectively (\$2.1 billion/yr)

Single Unit Trucks

- The annual reduction in fatalities and injuries relative to the base population for current generation systems is:
- Current technology 22% and 21% respectively (\$0.5 billion/yr)
- Second generation 43% and 46% respectively (\$1.0 billion/yr)
- Third generation 55% and 57% respectively (\$1.2 billion/yr)

Conclusions

- Current generation F-CAM systems provide significant reduction in the frequency and severity of truck rear-end striking crashes
- The research indicates that future systems will provide additional benefit:

Second generation – factor 1.9

Third generation – factor of 2.3

(relative to current generation systems)

Thank You! jhfw@umich.edu

